Association of Diffuse Alveolar Haemorrhage with Acquired Vitamin K Deficiency

Marjolein Drent, Sylvia Wessels, Jan. A. Jacobs, Henk Thijssen

University Hospital Maastricht, Departments of Pulmonology, Medical Microbiology and Pharmacology and Toxicology, Maastricht, The Netherlands

The causes of diffuse alveolar haemorrhage (DAH) are numerous. However, intensive search for an aetiology sometimes ends up negative [1]. A case of DAH associated with malnutrition, antibiotic treatment and anticoagulant therapy is reported. A 61-year-old male presented with dyspnoea, fever (39.8 °C), bilateral infiltrates on a chest radiograph and hypoxia at rest. He was under oral anticoagulant therapy (phenprocoumon: a coumarin derivate and vitamin K antagonist). The international normalised ratio (INR) appeared to be above the target value, without signs of bleeding complications. Screening for autoimmune disorders was negative. A pulmonary infection was considered. Despite the initiated antibiotic treatment (e.g. a combination of amoxicillin with clavulanate), the patient’s clinical condition further deteriorated. The diagnosis of DAH due to a relative vitamin K deficiency was considered by combining clinical features with the opacities on the chest radiograph, iron deficiency anaemia and bronchoalveolar lavage fluid cellular analysis which showed haemosiderin-laden alveolar macrophages without evidence of a pulmonary infection or another interstitial lung disorder [1]. Vitamin K₃ supplementation (2 mg orally, twice a week) was started as well as prednisone (initial dose 40 mg daily, tapered off in 1 week). Thereafter, the patients’ clinical condition improved dramatically. Follow-up examination after 1 year was unremarkable.

Anticoagulants such as heparin and oral anticoagulants as well as anticoagulant rodenticides have been reported as aetiologies of DAH [2]. It is known that malnutrition and/or antibiotic treatment [3, 4], especially together with anticoagulation therapy [5], are risk factors which can induce haemorrhages probably due to direct interference with vitamin K metabolism. Recognition in time is important because iron induces free radical damage to the lung and reversal of (excessive) anticoagulation is life-saving.

In conclusion, in case of unexplained infiltrates in critical ill patients, DAH due to vitamin K deficiency should be considered. Sufficient prophylactic administration of vitamin K₁ to patients at risk may prevent severe damage in these cases.

References